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Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging
of healthy motor modules predicts reduced locomotor performance
and muscle coordination complexity post-stroke. J Neurophysiol
103: 844 – 857, 2010. First published December 9, 2009;
doi:10.1152/jn.00825.2009. Evidence suggests that the nervous
system controls motor tasks using a low-dimensional modular orga-
nization of muscle activation. However, it is not clear if such an
organization applies to coordination of human walking, nor how
nervous system injury may alter the organization of motor modules
and their biomechanical outputs. We first tested the hypothesis that
muscle activation patterns during walking are produced through the
variable activation of a small set of motor modules. In 20 healthy
control subjects, EMG signals from eight leg muscles were measured
across a range of walking speeds. Four motor modules identified
through nonnegative matrix factorization were sufficient to account
for variability of muscle activation from step to step and across
speeds. Next, consistent with the clinical notion of abnormal limb
flexion-extension synergies post-stroke, we tested the hypothesis that
subjects with post-stroke hemiparesis would have altered motor mod-
ules, leading to impaired walking performance. In post-stroke subjects
(n � 55), a less complex coordination pattern was shown. Fewer
modules were needed to account for muscle activation during walking
at preferred speed compared with controls. Fewer modules resulted
from merging of the modules observed in healthy controls, suggesting
reduced independence of neural control signals. The number of
modules was correlated to preferred walking speed, speed modulation,
step length asymmetry, and propulsive asymmetry. Our results sug-
gest a common modular organization of muscle coordination under-
lying walking in both healthy and post-stroke subjects. Identification
of motor modules may lead to new insight into impaired locomotor
coordination and the underlying neural systems.

I N T R O D U C T I O N

Human movements exhibit considerable variability from trial
to trial (Bernstein 1967) and are highly complex in terms of both
neural activation and biomechanical output (Gottlieb 1998; Win-
ter and Yack 1987). However, much evidence now indicates that
a relatively low-dimensional organizational structure may under-
lie the rich complexity of neuromechanical output. Computer
simulations have shown that modulating the timing and amplitude
of a few sets of distinct muscle groupings is sufficient to
produce pedaling at different cadences (Raasch and Zajac
1999) and pedaling backward (Neptune et al. 2000; Ting et al.
1999). Furthermore, these muscle groupings are shown to

correspond to particular biomechanical functions critical to the
propulsion and phase transitions during pedaling. Experimental
studies using decomposition techniques have shown that mus-
cle activation patterns during natural behaviors may in fact be
organized in a similar modular fashion during locomotor and
postural tasks in animal and humans (Bizzi et al. 2008;
Ivanenko et al. 2004, 2005; Merkle et al. 1998; Olree and
Vaughan 1995; Ting and Macpherson 2005; Ting and McKay
2007; Tresch et al. 1999). Moreover, a few experimental
studies in postural control have shown direct correlations
between the activity of motor modules (also referred to as
muscle synergies) with kinetic and kinematic outputs (Krish-
namoorthy et al. 2003; Ting and Macpherson 2005; Torres-
Oviedo et al. 2006). Accordingly, these motor modules may
reflect a neural strategy of coordinating muscles in a low-
dimensional set of patterns that facilitate control of functional
motor behaviors.

Although modular organization of muscle coordination dur-
ing human walking has been proposed (Merkle et al. 1998;
Olree and Vaughan 1995), the robustness of such an organi-
zation and the relationship to task-level goals is not well
established. Prior work has shown consistent timing of motor
patterns across various walking tasks but suggests that the
coactivation of muscle varies considerably (Ivanenko et al.
2004). However, studies of different postural tasks suggest that
stable modules do exist (Ting and Macpherson 2005; Torres-
Oviedo et al. 2006), which is consistent with our simulations of
pedaling and simulations of central pattern generator control of
locomotor patterns (McCrea and Rybak 2008). There are clear
repeatable characteristics of locomotor muscle activity from
step to step that suggest stable modular organization is a
feasible control solution. However, it is not known whether
such an organization can account for the inherent variability
that is also characteristic of repeated stepping or walking at
different speeds.

If muscle modules are indeed mechanisms by which task-
level biomechanical goals are implemented, we would hypoth-
esize that impairments to the neural control and organization of
such modules would directly result in impaired biomechanical
outputs. Simulations have shown that independent activation of
primary extensors and bifunctional leg muscles is necessary to
allow for smooth flexion–extension transitions during pedal-
ing. Indeed, in post-stroke subjects, abnormal coactivation of
bifunctional thigh muscles with extensors and difficulty with
flexion–extension transition phases is observed post-stroke
along with reduced external mechanical work production. Al-
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though these results suggest a link between abnormal muscle
coactivation and impaired biomechanical output, the degree to
which such observations would apply to impaired walking
(e.g., in persons with post-stroke hemiparesis) is unknown.
Moreover, if motor modules do produce biomechanical func-
tions, it would be critical to know whether patients have access
to a subset of modules available to healthy subjects or whether
the modules themselves are also impaired (Ting and McKay
2007).

The causal relationships between neuromotor impairments
and locomotor performance post-stroke have yet to be shown.
post-stroke motor impairment has traditionally been character-
ized in the clinic as being caused by “abnormal synergies,” in
reference to stereotypical patterns of limb flexion and exten-
sion, but the relationship of such observations to the muscle
synergies/modules identified during walking through quantita-
tive analysis of EMG is unknown. Additionally, motor impair-
ments in persons post-stroke are typically evaluated during
isolated voluntary movements (Fugl-Meyer et al. 1975), which
may have limited relevance to motor coordination during
walking (Bowden et al. 2009). Although post-stroke locomotor
impairments are assumed to be caused by abnormal patterns of
muscle coordination, prior studies typically focused on kine-
matic or spatiotemporal patterns (De Quervain et al. 1996;
Mulroy et al. 2003) or on muscle activation magnitude and
timing patterns in individual muscles (Den Otter et al. 2006;
Knutsson and Richards 1979).

We hypothesized that walking is produced through the
variable activation of a small set of motor modules in healthy
subjects. Therefore we predicted that the step-by-step variabil-
ity in muscle activation patterns and changes in muscle activity
across different walking speeds could all be accounted for by
the same set of motor modules identified through decomposi-
tion techniques. We further hypothesized that the changes in
motor modules post-stroke underlies the specific motor deficits
observed and the reduced complexity in the muscle activation
signals. Accordingly, we predicted that differences in the
modular organization between post-stroke and healthy persons
would be associated with various measures of walking perfor-
mance.

M E T H O D S

Participants

Participants in this study included 55 adults with post-stroke hemi-
paresis and 20 healthy adults (see Table 1 for demographic informa-
tion). Inclusion criteria for persons post-stroke included hemiparesis
secondary to a single unilateral stroke and absence of lower extremity
joint pain, contractures, major sensory deficits, cardiovascular or
respiratory symptoms contraindicative of walking, and any other
significant non–stroke-related impairment affecting walking. All par-
ticipants were capable of walking independently for 10 m on a level
surface, showing that dynamic postural stability was largely intact and
that our study was primarily addressing locomotor coordination.
Study procedures were approved by the Institutional Review Boards
of the Department of Veterans Affairs and the University of Florida.
Participants provided informed consent in accordance with the Dec-
laration of Helsinki.

Procedures

Walking trials of 30-s duration were performed on an ADAL
split-belt motor driven treadmill (Techmachine, Andrezieux Bou-

theon, France), and all subjects were secured by a safety harness to
eliminate the risk of falling. No body weight unloading was provided,
and participants did not hold onto a bar or use any other supporting
devices. Participants with post-stroke hemiparesis walked at self-
selected comfortable speed (SS, 3 separate trials) and at fastest
comfortable speed (FC, 2 separate trials). Healthy participants walked
at SS (3 trials), FC (2 trials), and six additional speeds (1 trial each)
ranging from 0.3 to 1.8 m/s, which allowed us to test the robustness
of our methodology across different walking speed conditions. In
addition, overground walking at self-selected speed was assessed
using a GAITRite walkway (CIR Systems, Havertown, PA). Bipolar
Ag-AgCl surface electrodes were used to record EMG from the
tibialis anterior (TA), soleus (SO), medial gastrocnemius (MG), vas-
tus medialis (VM), rectus femoris (RF), medial hamstrings (MH),
lateral hamstrings (LH), and gluteus medius (GM) of each leg using
a telemetered EMG acquisition system (Konigsberg Instruments,
Pasedana, CA). Each skin site was shaved and cleaned with alcohol
before electrode placement (Perroto 1994). All data were measured at
2,000 Hz using Vicon Workstation v4.5 software and saved to disk for
off-line analysis. Data were analyzed using Matlab 7.0 (The Math-
works, Natick, MA) and JMP statistical software (v. 7.0, SAS Insti-
tute, Cary, NC).

Data analysis

NONNEGATIVE MATRIX FACTORIZATION. Muscle activation signals
(EMGs) were high-pass filtered (40 Hz) with a zero lag fourth-order
Butterworth filter, demeaned, rectified, and smoothed with a zero lag
fourth-order low-pass (4 Hz) Butterworth filter. To facilitate compar-
isons between subjects and among different walking speeds, the EMG
from each muscle was normalized to its peak value from self-selected
walking and resampled at each 1% of the gait cycle. For each subject,
leg, and walking speed, the EMGs were combined into an m � t
matrix (EMGo), where m indicates the number of muscles and t is the
time base (t � no. of strides � 101).

For each subject, an NNMF algorithm (Lee and Seung 1999; Ting
and Macpherson 2005) was applied to the m � t matrix corresponding
to all gait cycles from SS trials 1 and 2 (trial 3 was reserved for later
analysis). A priori, the number of modules, n, is specified, and the
NNMF algorithm finds the properties of the modules by populating
two matrices: an m � n matrix, which specifies the relative weighting
of a muscle in each module, with each muscle weight invariant across
all gait cycles, and an n � t matrix, which specifies the activation
timing of each module over each of the gait cycles.

When these two matrices are multiplied, an m � t matrix is
produced that attempts to reconstruct the EMGs over all of the

TABLE 1. Participant demographics

Mean SD Range

Hemiparetic group (n � 55)
Age (yr) 59.5 11.7 36–82
Time since stroke (mo) 57.8 64.8 7–411
Lower extremity Fugl-Meyer

score (out of 34) 22.0 8.3 8–34
Lower extremity Fugl-Meyer

synergy score (out of 22) 14.9 5.5 6–22
Self-selected overground walking

speed (m/s) 0.58 0.26 0.14–1.16
Sex (male/female) 35/20
Side affected (left/right) 34/21

Control group (n � 20)
Age 65.5 9.8 51–83
Self-selected overground walking

speed (m/s) 1.25 0.15 0.99–1.62
Sex (male/female) 4/16
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consecutive gait cycles. Notice that NNMF allows muscles to belong
to more than one module and that a muscle’s reconstructed EMG is
the summed contributions from all the modules (Fig. 1). The m � t
matrix of the reconstructed EMGs (EMGr) is compared with the
original EMG matrix (EMGo) and the agreement quantified by cal-
culating the sum of the squared errors: (EMGo – EMGr)

2. Within this
framework, the NNMF algorithm performed an iterative optimization
until it converged on the muscle weights and the activation timings of
the modules that minimized the error.

Determining the number of modules needed for
EMG reconstruction

We made no a priori assumptions regarding the number of modules
that would be required to adequately reconstruct the EMG signals.
Therefore separate NNMF analyses were performed with the output
constrained to one, two, three, four, and five modules. To determine
the minimum number of modules needed to adequately reconstruct
EMGo in each leg of each subject, we calculated the variability
accounted for (VAF) as the ratio of the sum of the squared error
values to the sum of the squared EMGo values [VAF � 1 �
(EMGo–EMGr)

2/EMGo
2]. VAF was calculated for each muscle across

all gait cycles. To ensure that EMG was adequately reconstructed
within each region of the gait cycle, VAF was also calculated as the
cumulative of all muscles within each of six regions for all gait cycles.
The regions were defined as 1) first double support, 2) first half of
ipsilateral single leg stance, 3) second half of ipsilateral single leg
stance, 4) second double support, 5) first half of ipsilateral swing, and
6) second half of ipsilateral swing. The analysis for each subject began
by assuming that only one module was needed for EMG reconstruc-
tion. If VAF was �90% for each of the eight muscles and six regions,
it was concluded that additional modules were not needed. Otherwise,

the number of modules assumed was increased until all muscles and
regions achieved 90% VAF or until adding an additional module did
not increase VAF by �5% for the muscle(s) and/or region(s) with the
lowest VAF. This approach is conservative and ensures a strong
agreement between the original and reconstructed EMG signals.

Robustness of module definitions across walking speeds

To determine the robustness of the SS module definitions across
different SS trials and at other walking speeds, we performed an EMG
reconstruction on walking data not originally used to define the
modules (i.e., SS trial 3 and all fixed speed trials). This was accom-
plished by holding the muscle weightings of the modules (which were
defined using SS trials 1 and 2) constant across all conditions while
allowing the activation timing in each cycle to vary. This analysis was
performed for each individual subject and leg, and the VAF of the
reconstructed EMG was used to quantify the success of the original
identified muscle weightings and the newly computed activation
timings to reconstruct the EMGs.

Locomotor performance measures

To assess whether the number of modules accounting for the paretic
leg EMGs was related to locomotor performance, we examined the
self-selected overground walking speed (Perry et al. 1995), change in
speed between self-selected and fastest comfortable walking (Jonkers et
al. 2009), step length asymmetry (Balasubramanian et al. 2007), and
forward propulsive asymmetry (Bowden et al. 2006). To quantify step
length asymmetry, we first calculated the ratio of the paretic step length
to the overall stride length. We then subtracted this paretic step ratio from
0.5 (which would indicate perfectly symmetrical step lengths) to deter-
mine the deviation from symmetry. A similar method was used for
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FIG. 1. Reconstruction of EMGs by nonnegative matrix factorization (NNMF). Only 3 consecutive cycles of reconstruction are shown. A: normalized muscle
activation signals from eight unilateral leg muscles over a series of cycles were analyzed. B: muscle activity was processed by an NNMF algorithm, which applied
an iterative optimization procedure to best reconstruct the activation signals using a small set of motor modules. For each module, the adjusted parameters include
muscle weightings and an activation timing profile across the gait cycle. The contribution of any given module to a muscle’s activation over the gait cycle is
the product of the muscle weighting for that module times the module’s activation timing profile. C: for each muscle, the summed contributions from the modules
constitute the reconstructed EMG signal.
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calculating forward propulsive asymmetry, where propulsion is defined
as the integral of the anteriorly directed component of the horizontal
ground reaction force (Bowden et al. 2006). The amount of paretic
propulsion relative to the sum of paretic and nonparetic propulsion
(Bowden et al. 2006) was computed and subtracted from 0.5 (where 0.5
indicates symmetrical propulsion) to determine the deviation from sym-
metry.

Activation characteristics contributing to reduced complexity

To further examine the characteristics of muscle activation respon-
sible for reduced locomotor output complexity, we separated our
post-stroke participants into groups based on the number of modules
required for EMG reconstruction (2, 3, or 4 modules; see RESULTS).
After establishing these post-stroke groups, we performed the NNMF
analysis assuming four modules for all of the participants to assess
how the muscle weightings differed among groups and how activation
profiles differed among modules within the same group. The muscle
weightings for each module were correlated across groups to quantify
the similarity (i.e., module 1 across groups, module 2 across groups,
etc.). High correlations indicate similar module composition. Within
each group, correlations of activation timing profiles between modules
were computed to assess whether modules are independently active.
High correlations indicate a lack of independent module activation.

EMG magnitude

To assess the potential effect of the EMG magnitude on the number
of modules identified, raw EMG in millivolts from each muscle was
averaged by leg (i.e., paretic or nonparetic) over all the gait cycles for
each participant. The values from all muscles were averaged together
to obtain a single composite measure for each leg of each participant.

Statistics

Group differences in the number of modules accounting for muscle
activation during self-selected walking were assessed using a Pear-
son’s �2 test. The association between the number of modules and
walking performance was assessed using a Spearman’s correlation. A
two-factor ANOVA and Tukey’s post hoc analysis were used to
compare EMG magnitude across control, paretic, and nonparetic legs
with different levels of locomotor output complexity.

R E S U L T S

Modular organization of locomotor muscle activity in
healthy individuals

In healthy participants, four modules were typically required
to reconstruct unilateral lower extremity muscle activation
during walking at self-selected speed (3.6 � 0.6 modules for
the right leg, 3.7 � 0.7 for the left leg). Of the 40 healthy legs
measured, 2.5% required two, 37.5% required three, 55%
required four, and 5% required five modules (Fig. 2). The
variability accounted for by any given number of modules was
always lower in the control and nonparetic legs compared with
the paretic legs, indicating less complexity in the patterned
activity of the paretic leg during walking (Fig. 3).

To characterize typical module composition and timing in
the healthy legs, we extracted four independent modules from
all of the subjects from the two SS trials, regardless of the
actual number of modules required to account for our mini-
mum criterion of 90% of the variability of each muscle and
each region of the gait cycle. Each module was phased to a
particular region of the gait cycle, and the characteristics of

each module were quite similar across the healthy participants
(Fig. 4, A and B). Our results showed the following properties
of each module.

Module C1 consisted mainly of extensor activity from the
GM (hip extensor and abductor), VM (knee extensor), and to a
lesser extent, RF (knee extensor and hip flexor). This module
was active primarily in early stance and likely provides body
support during weight acceptance (Neptune et al. 2009).

Module C2 consisted mainly of calf muscles SO (ankle
plantarflexor) and MG (ankle plantarflexor and knee flexor)
and was active during late stance. It likely contributes to body
support, forward propulsion, and swing initiation (Neptune et
al. 2009).

Module C3 primarily consisted of activity in the TA (ankle
dorsiflexor) and RF during early stance, which likely provides
dorsiflexion during and immediately after heel strike and early
swing, where it likely contributes to ground clearance of the
foot (Neptune et al. 2009).

Module C4 consisted mainly of medial and lateral hamstring
(MH and LH; knee flexor and hip extensor) activation during
late swing and early stance and may decelerate the leg at the
end of swing and propel the body during early stance (Neptune
et al. 2009).

For each subject, the same set of module weightings was able
to reproduce muscle activity for a range of walking speeds
between 0.3 and 1.8 m/s (85–98% of variability was accounted for
in all muscles and regions of the gait cycle). As walking speed
increased, the activation timing profile of each module increased
in amplitude and showed more defined peaks (Fig. 4C).

Modular organization of locomotor muscle activity in
persons post-stroke

Fewer modules were needed to account for walking muscle
activity in the paretic leg of persons post-stroke (2.7 � 0.8)
relative to nonparetic (3.5 � 0.7) and healthy control legs (3.6 and
3.7 for right and left legs, respectively; P � 0.001) The majority
of nonparetic legs (58%) required four modules, which is com-
parable to the healthy controls. However, most paretic legs re-
quired just two (45%) or three (36%) modules (Fig. 2). Hence-
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forth, we refer to the two-, three-, and four-module paretic sub-
groups as the low, moderate, and high complexity paretic sub-
groups, respectively, because the presence of more independent
modules reflects greater locomotor output complexity. Partici-
pants requiring fewer modules had more muscle coactivation (Fig.
5, cf. unprocessed, processed, and reconstructed EMGs).

In the low complexity group, two modules with independent
timing were found. One included strong representation of all of
the muscles measured except for ankle dorsiflexor TA (module

L1; Fig. 6A) and was active primarily in the stance phase. The
other was dominated by TA and RF activity (module L2) and
active primarily in the swing phase, similar to module C3 in
healthy controls. However, the representation of other muscles
within L2 was generally higher than in C3 in healthy control
legs (cf. Fig. 4A, module C3, to Fig. 6A, module L2).

Within the moderate complexity subgroup, we observed two
general categories of modular organization that were shared by
a number of participants. Eight of 19 individuals (category a)
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had a module active throughout stance with strong representa-
tion of the ankle plantarflexors, as well as the more proximal
extensor muscles (Fig. 6B, module M1a). This differed from
the two separate modules (C1 and C2) observed in healthy
controls with activation restricted to late and early stance,
respectively. The remaining modules (Fig. 6B, modules M2a
and M3a) were similar to healthy control modules C3 and C4,

respectively. In four individuals (category b), a different mod-
ular organization was observed. The proximal extensors ap-
peared in the same module as the hamstring muscles (Fig. 6C,
module M3b), resembling a combination of healthy control
modules C1 and C4. The remaining modules (Fig. 6C, modules
M1b and M2b) resembled modules C2 and C3 in healthy
controls. Seven individuals in the moderate complexity sub-
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each muscle averaged over 10 consecutive gait cycles. In both A and B, note that the activation patterns appear broader and less differentiated in the low
complexity subject. The horizontal bars at the bottom of the figure indicate where in the gait cycle each module is highly active (defined as �50% of the mean
activity).
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group had more variable patterns that did not fall into an
obvious classification, although it is notable that all maintained
a distinct swing module dominated by TA activity.

Modules from the high complexity subgroup (Fig. 6D,
modules H1–H4) appeared similar to those observed in the
healthy controls in both the muscle weightings and activation
timing profiles (cf. Figs. 4 and 6D).

Activation characteristics contributing to reduced complexity

Although four modules were not needed to account for the
variability of activation in most paretic legs (as described
earlier), we proceeded to run the NNMF analysis using four
modules on all study participants to examine why merging of
modules was observed in the paretic legs. The muscle weight-
ings and activation timing profiles of each paretic subgroup
were found to be very strongly associated with those of the
healthy control group (Table 2, A and B, and cf. Fig. 7 to Fig.
4). When assessing the module characteristics within each

subgroup, we found that the muscle weightings of each module
were completely independent (Table 2C; Fig. 7) but the acti-
vation timing profiles became progressively more similar
(stronger correlations between module timing) in the high,
moderate, and low complexity paretic subgroups, respectively
(Table 2D; Fig. 7). These findings indicate that, although
modules with similar muscle weightings are present in both
healthy and paretic legs, the ability to differentially activate the
modules was compromised in many of the paretic legs and led
to merging of module activation timing.

Locomotor output complexity and task performance

The level of locomotor output complexity in the paretic leg
of persons post-stroke (i.e., the number of independent mod-
ules) predicted locomotor performance, including self-selected
walking speed (Fig. 8A; � � 0.50, P � 0.0002), speed mod-
ulation between self-selected and fast walking (Fig. 8B; � �
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FIG. 6. Module muscle weightings and activation timing profiles in the paretic leg of persons post-stroke at self-selected walking speed. Refer to Fig. 4 for
meaning of gray and black bars and lines. A: the low complexity subgroup had a stance module (L1) that resembled a combination of control modules C1, C2,
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TABLE 2. Comparison of four-module results in healthy and paretic legs

A Correlation of Muscle Weightings Across Groups B Correlation of Module Timing Across Groups
Module 1 Module 1
Group Healthy Low Moderate “a” Moderate “b” Group Healthy Low Moderate “a” Moderate “b”

Low 0.90 Low 0.87
Moderate “a” 0.92 0.98 Moderate “a” 0.93 0.98
Moderate “b” 0.78 0.78 0.82 Moderate “b” 0.95 0.90 0.95
High 0.93 0.93 0.90 0.76 High 0.79 0.96 0.95 0.84

Module 2 Module 2
Group Healthy Low Moderate “a” Moderate “b” Group Healthy Low Moderate “a” Moderate “b”

Low 0.97 Low 0.72
Moderate “a” 0.97 0.98 Moderate “a” 0.88 0.92
Moderate “b” 0.95 0.94 0.91 Moderate “b” 0.93 0.88 0.96
High 0.98 0.99 0.97 0.97 High 0.95 0.82 0.91 0.97

Module 3 Module 3
Group Healthy Low Moderate “a” Moderate “b” Group Healthy Low Moderate “a” Moderate “b”

Low 0.94 Low 0.49
Moderate “a” 0.92 0.98 Moderate “a” 0.54 0.99
Moderate “b” 0.98 0.97 0.95 Moderate “b” 0.65 0.96 0.97
High 0.94 0.98 0.99 0.97 High 0.64 0.95 0.98 0.96

Module 4 Module 4
Group Healthy Low Moderate “a” Moderate “b” Group Healthy Low Moderate “a” Moderate “b”

Low 0.94 Low 0.62
Moderate “a” 0.96 0.97 Moderate “a” 0.92 0.82
Moderate “b” 0.89 0.91 0.88 Moderate “b” 0.65 0.92 0.85
High 0.97 0.93 0.94 0.96 High 0.87 0.86 0.98 0.85

C Correlation of Muscle Weightings Within Each Group D Correlation of Module Timing Within Each Group
Healthy Healthy
Module 1 2 3 Module 1 2 3

2 �0.40 2 �0.06
3 0.07 �0.45 3 0.45 �0.63
4 �0.32 �0.48 �0.30 4 0.31 �0.54 0.14

Low Complexity Paretic Low Complexity Paretic
Module 1 2 3 Module 1 2 3

2 �0.30 2 0.73
3 �0.26 �0.40 3 �0.68 �0.82
4 �0.22 �0.35 �0.40 4 0.82 0.48 �0.67

Moderate Complexity “Category a” Paretic Moderate Complexity “Category a” Paretic
Module 1 2 3 Module 1 2 3

2 �0.25 2 0.66
3 �0.25 �0.45 3 �0.65 �0.78
4 �0.32 �0.42 �0.26 4 0.50 �0.11 �0.39

Moderate Complexity “Category b” Paretic Moderate Complexity “Category b” Paretic
Module 1 2 3 Module 1 2 3

2 �0.28 2 0.43
3 �0.33 �0.46 3 �0.53 �0.77
4 0.04 �0.30 �0.48 4 0.78 0.26 �0.64

High Complexity Paretic High Complexity Paretic
Module 1 2 3 Module 1 2 3

2 �0.22 2 0.58
3 �0.30 �0.38 3 �0.61 �0.71
4 �0.31 �0.43 �0.33 4 0.32 �0.29 �0.31

Bold italicized text indicates significant positive correlation (P � 0.001).
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0.47, P � 0.0008), propulsive asymmetry (Fig. 8C; � � �0.28,
P � 0.04), and step length asymmetry (Fig. 8D; � � �0.32,
P � 0.02). Even within the moderate complexity subgroup
where the number of independent modules is three, differences
in modular organization highlight functional consequences.
When the distal and proximal extensors were not indepen-
dently modulated (i.e., persons in category a), the ratio of
propulsion generated by the paretic leg relative to the nonpa-
retic leg was low (0.27 � 0.16). In contrast, when the distal
extensors were modulated independently (i.e., persons in cat-
egory b), the ratio tended to be higher (0.52 � 0.32), although
this did not achieve statistical significance (P � 0.09).

EMG magnitude

A significant effect of group was found for the measure of
composite muscle activation magnitude (P � 0.0004), but post
hoc analysis showed only that the moderate complexity non-
paretic subgroup had greater activation amplitude than the low

and moderate complexity paretic subgroups. No significant
difference was found between the low and high complexity
subgroups for either the paretic or nonparetic legs or between
the four-module controls and low complexity paretic and
nonparetic subgroups (all P � 0.05; Table 3).

D I S C U S S I O N

Our results support a common, low-dimensional modular
organization of muscle coordination underlying walking in
both healthy and post-stroke subjects with hemiparesis. Four
independently timed modules generally accounted for cycle-
by-cycle variability in muscle activation across a range of
walking speeds in healthy persons, whereas in persons post-
stroke, the number of independently timed modules was often
less because of the coincident timing of some modules. Fewer
modules correspond to an overall reduction in complexity of
locomotor control, and this reduction in locomotor output
complexity was associated with poorer walking performance.
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FIG. 7. Module muscle weightings and activation timing profiles identified when NNMF was performed using 4 modules in all paretic legs. Refer to Fig. 4
for meaning of gray and black bars and lines. Associations within each group for muscle weightings and activation timing profiles are quantified in Table 2, C
and D, respectively. A: the low complexity subgroup had modules with independent composition (muscle weightings) but similar timing of modules 1, 2, and
4. B: the category a moderate complexity subgroup had modules with independent composition but similar timing of modules 1 and 2. C: the category b moderate
complexity subgroup had modules with independent composition but similar timing of modules 1 and 4. D: the high complexity subgroup had modules with
independent composition and activation timing profiles that were less correlated than in the moderate and low complexity subgroups.
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These results suggest that the modular organization of muscle
activation serves as a quantitative indicator of complex changes in
multiple muscle coordination and also underlies walking ability.
Furthermore, this technique takes advantage of the inherent trial-
to-trial variability that typically poses a problem for reliable
clinical assessment, showing common low-dimensional struc-
ture underlying the variability. Taken together with both basic
science and simulation studies, such an approach may prove

promising for identifying and monitoring locomotor impair-
ments in a range of patient populations.

Modular control of locomotion in healthy and neurologically
impaired populations

Our data suggest that the fundamental modular organization
of muscle coexcitation in healthy and post-stroke nervous
systems is qualitatively similar but that the difference lies in
the extent to which modules can be activated independently.
Indeed, when the data for all post-stroke participants were
analyzed using four modules (even when our VAF criteria
could be met with fewer modules), we found that the module
muscle weightings were remarkably similar between the
healthy and post-stroke groups. A similar result has also been
reported in a recent study that used NNMF to examine control
of reaching in persons post-stroke (Cheung et al. 2009). The
activation timing profiles of the four modules were relatively
independent in the control and high complexity paretic groups,
but less independent in the moderate and low complexity
paretic subgroups. This lack of modular independence led to
the identification of merged modules (and therefore reduced
locomotor output complexity) in most of the post-stroke par-
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FIG. 8. Locomotor output complexity and walking performance. Locomotor output complexity in the paretic leg of persons post-stroke is associated with
measures of walking performance, including (A) overground self-selected walking speed, (B) speed difference between self-selected and fast walking, (C)
propulsive asymmetry, and (D) step length asymmetry. In C and D, 0 represents perfect symmetry, whereas higher values indicate asymmetry. Healthy control
data are shown as a reference but were not included in the statistical analysis. The 3 horizontal bars representing each variable indicate, from bottom to top, the
lower quartile, median, and upper quartile. Error bars indicate �1.5 � interquartile range. Circles represent outlying data points.

TABLE 3. Mean EMG of all muscles by subgroup

Control

3 Modules (15) 203.1 � 67.9 mV
4 Modules (20) 160.05 � 81.8 mV

Nonparetic
2 Modules (2) 269.3 � 194.8 mV
3 Modules (14) 206.5 � 57.1 mV
4 Modules (23) 142.8 � 46.3 mV

Paretic
2 Modules (21) 127.1 � 50.9 mV
3 Modules (13) 125.3 � 75.3 mV
4 Modules (6) 178.4 � 67.9 mV

Values are means � SD for mean EMG. Numbers in parentheses indicate all
muscles.
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ticipants when the number of modules was determined accord-
ing to our VAF criteria. Although reduced dimension modular
organization of muscle activation in healthy persons may
facilitate execution of the primary biomechanical subtasks of
walking, impaired ability to independently control the modules
post-stroke reduces locomotor output complexity to the degree
that it may excessively constrain motor output and disrupt
proper biomechanics.

Our results indicate that the level of locomotor output
complexity in persons post-stroke is predictive of walking
performance, because persons with fewer independently timed
modules walk more slowly and have more asymmetrical step
lengths and propulsion generation. Indeed, we have recently
shown that locomotor output complexity is a superior predictor
of walking performance than the Fugl-Meyer assessment
(Bowden et al. 2009), which is generally considered the gold
standard for assessing post-stroke motor impairment. Further-
more, within the moderate complexity paretic subgroup, we
observed two distinct types of modular organization that
yielded predictable biomechanical results. Poorer generation of
propulsion resulted if the early and late stance modules were
combined, because this indicates interference between the
weight acceptance and propulsion subtasks. In contrast, better
propulsion resulted when the late stance module remained
independent. It is possible that such differences in modular
organization may occur based on the neural pathways/systems
affected by stroke. Conversely, specific behavioral deficits may
provide insight to the neural pathways or systems affected by
injury.

Our findings are consistent with the seminal work of Knutt-
son and Richards (1979), who established distinct classifica-
tions that qualitatively described the locomotor activation pat-
terns of most of their post-stroke research participants. Each of
their classifications were characterized by abnormal amplitude
and/or timing of activation (e.g., coactivation of several limb
muscles), although their classifications were based on obser-
vation of EMG data rather than a quantitative algorithm.
Subsequently, other investigators have developed quantitative
methods for detecting abnormal activation, but these ap-
proaches generally analyze one muscle at a time or compare
pairs of muscles (Den Otter et al. 2006; Fung and Barbeau
1989). Decomposition analyses, such as the one use here, offer
a more comprehensive methodology for dissociating the
changes in coactivation and timing of a large number of
muscles, providing insight to the underlying organization of
the locomotor activation pattern.

The modules identified in our healthy control group are
qualitatively very similar to the modular organization of mus-
cle activation presented by earlier studies of human walking
(Cappellini et al. 2006; Davis and Vaughan 1993; Ivanenko et
al. 2004; Merkle et al. 1998; Wootten et al. 1990). This is
despite the fact that these studies have recorded from a larger
set of muscles and have used normalization and decomposition
procedures that differ somewhat from ours. Ivanenko and
colleagues have extensively studied control of human walking
using decomposition procedures (Cappellini et al. 2006; Iv-
anenko et al. 2004, 2006), and our results in healthy controls
compares favorably with their work. Like us, they showed an
early stance component with high activity of the quadriceps
group and gluteus medius, a late stance component with high
activity in the triceps surae, an early swing component with

high activity of ankle and hip flexors, and a late swing com-
ponent with high activity in the hamstrings. The most notable
discrepancy in the data is that they have identified five mod-
ules, whereas we identified four. This can be accounted for by
the fact that we recorded from fewer muscles, because the
additional component from their study contains high weight-
ings for the erector spinae and iliopsoas muscles. Consistent
with this finding, we recently performed a study in which the
healthy modules were used to control a forward dynamics
simulation of walking and showed that an additional (fifth)
module comprised of iliopsoas activity contributed to walking
during pre- and early swing (Neptune et al. 2009).

In persons with incomplete spinal cord injury, Ivanenko et
al. (2003, 2004) found the same five muscle timing patterns
that were observed in healthy persons. This is in contrast to our
own results in which a number of individuals with incomplete
spinal cord injury exhibited reduced locomotor output com-
plexity much like our post-stroke subjects (Fox et al. 2009).
Although the discrepancy in their results to ours may simply
reflect differences between the participants in our respective
studies, they are likely caused by differences in the ways that
similar analysis techniques were used to test different hypoth-
eses. We hypothesized that muscle groupings would remain
constant and thus allowed the timing patterns to vary to
identify common muscle modules. Ivanenko et al. hypothe-
sized the timing patterns to remain the same, allowing muscle
groupings to vary while identifying common timing patterns
across conditions (equivalent to applying the decomposition to
the transpose of the data matrix). Whereas our methodology
shows that muscle groupings remain fixed despite cycle-by-
cycle differences in timing, the use of averaged data (Ivanenko
et al. 2004) may mask any observed variations in timing.
Finally, our criterion for choosing the number of modules was
to use the minimum number that accounted for �90% of the
variability for each muscle and each region of the gait cycle. In
contrast, their criterion was to accept any component that
explained more than a particular amount of variability (gener-
ally 5% or more of the total variability), without the explicit
goal of accounting for most of the variability in the data set
(Ivanenko et al. 2003).

Modular control and biomechanical output

In the way that we and others have applied and interpreted
the NNMF and similar decomposition techniques, fixed group-
ings of muscles are coactive to elicit a particular biomechanical
function (Ting and Macpherson 2005; Tresch et al. 1999).
Although we do not view muscle weightings as a fixed param-
eter over long time scales, we expect that weightings will
remain relatively similar from stride to stride during steady-
state walking or across different speeds when the biomechani-
cal requirements remain similar. During postural responses, the
number of modules used by a subject and the muscle weight-
ings have been shown to constrain trial by trial variability in
muscle activation patterns and to be consistent across days
(Torres-Oviedo and Ting 2007). Similarly, we showed that the
same muscle weightings can be used to account for the vari-
ability in the locomotor activation pattern across strides and
across speeds in healthy individuals. However, if the biome-
chanical requirements change to a larger extent, we expect that
the muscle weightings will also change. For example, it has
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been shown that if a person’s weight is increased (i.e., by
wearing a weighted belt) while a body weight support system
offloads an equal amount of weight, the task mechanics require
an increase of horizontally directed ground reaction force (i.e.,
propulsion) but unchanged vertically directed ground reaction
force (i.e., body support) (McGowan et al. 2009). The contri-
bution of the plantarflexor muscle group to these mechanical
changes was shown to be dominated by enhanced activation of
soleus, with considerably smaller changes in gastrocnemius
activation. These changes in activation are consistent with their
known biomechanical functions (Neptune et al. 2001) in that
soleus contributes more to horizontal propulsion than does
gastrocnemius. Thus variation occurred in the muscle activa-
tion space to best produce the biomechanical function (which
likely is an effective way to reduce the variability in the
performance of the biomechanical function in each task). The
concept that variability in the activation space can be used to
reduce variability in the output space is consistent with the use
of the term “synergy” by Latash (Danna-Dos-Santos et al.
2009; Latash et al. 2007). During walking, modulation of
modular organization on a step by step basis is facilitated by
ongoing feedback (dynamic state of the system and environ-
ment) and feed-forward (task objectives) neural signals to yield
a set of modules that performs well the biomechanical func-
tions to produce successful walking.

Several simulation studies showed the feasibility of using
low-dimensional modular muscle control in producing robust
biomechanical outputs for movement. Using a computer sim-
ulation of healthy walking where muscles are excited using
module control, we have previously shown that the timing and
muscle composition of the experimentally identified healthy
modules result in appropriate biomechanical output to meet the
task requirements of steady-state walking (Neptune et al.
2009). The biomechanical role that we proposed for each
module, which was confirmed by the simulation, are weight
acceptance and/or body support for module C1, body support,
propulsion and swing initiation for module C2, flexion/ground
clearance for module C3, and leg deceleration for module C4
(Neptune et al. 2004, 2009; Zajac et al. 2003). This finding
suggests that the modules represent a functional transformation
between sensorimotor signals and biomechanical output. Sim-
ilarly, in physiological tests in frogs, a small set of indepen-
dently controlled motor modules rather than time-varying mus-
cle synergies is competent to reproduce a wide range of limb
trajectories (Kargo and Giszter 2008). Moreover, motor mod-
ules may be organized to capture the natural dynamics of the
limb (Berniker et al. 2009). In simulations of force generation
during postural control in cats, muscle synergy constraints for
nominal postural configurations were shown to constrain force
output direction when the postural configuration changed
(McKay and Ting 2008). Together with experimentally mea-
sured correlation between motor module activity and biome-
chanical outputs (Ivanenko et al. 2007; Ting and Macpherson
2005; Torres-Oviedo et al. 2006), these studies suggest that
complex biomechanical interactions during natural movements
can be controlled by a small set of task-appropriate biome-
chanical components that both exploit and constrain the dy-
namics of the limb (Ting and McKay 2007). This premise
concurs with the findings of Krouchev et al. (2006), who used
cluster analysis and NNMF to examine modularity in the
hindlimb of cats during walking. Although their cluster anal-

ysis identified seven synergies, some of these synergies were
active during the same region of the gait cycle and were
concluded to contribute to the same biomechanical function.
Consistent with our findings in human walking, they identified
four separate biomechanical functions with associated coactive
muscle groupings. Furthermore, when they applied the NNMF
algorithm using seven factors to their data, they found strong
similarities with the synergies identified by their cluster anal-
ysis.

Neural basis for impaired modular control post-stroke

Although studies in animal locomotion suggest that the
modular organization of muscle coordination is encoded in the
spinal cord (Dietz 2003; Kargo and Giszter 2008; McCrea and
Rybak 2008; Tresch et al. 1999), the impaired modular orga-
nization that we observed in the paretic leg of our post-stroke
participants is likely related to changes in processes at multiple
levels of the neural axis. Some of the most critical issues
post-stroke that may disrupt the typical modular output are
altered supraspinal drive (and its secondary consequences) and
impaired sensory-motor control. Thus descending supraspinal
input, spinal pattern generation, and processing of afferent
information may all be impaired.

Increased reliance on supraspinal pathways other than cor-
ticospinal may contribute to the merged modules that we
observed in persons post-stroke. Corticospinal drive (Canedo
1997) influences the overall level of muscle activity during
normal walking (Petersen et al. 2001) and, at times, individual
muscle activity (Pijnappels et al. 1998). Reduced corticospinal
drive post-stroke could contribute to a reduced ability to
activate paretic modules (Nielsen et al. 2008). Corticospinal
pathways may also fractionate individual movement from more
complex multijoint patterns (Lemon 2008). Compromised cor-
ticospinal control may lead to a reliance on other descending
brain stem pathways that produce a more diffuse output. Thus
loss of descending drive from corticospinal pathways to the
interneurons and motoneuron pools responsible for generating
the extensor phase modules may cause the propulsion and/or
leg deceleration modules to no longer be independent from the
weight acceptance module. Increased reliance on other de-
scending brain stem pathways, such as reticulospinal and
bulbospinal tracts (Dewald and Beer 2001; Lum et al. 2003),
has been suggested to cause post-stroke abnormal coupling of
torque generation (Cruz and Dhaher 2008).

Impaired sensory-motor integration likely induced changes
in reflexes and afferent processing and may have also affected
the organization of motor modules. Indeed, research of the
hindlimb wiping reflex in frogs has shown that sensory feed-
back alters phasing of premotor primitives (Kargo and Giszter
2008) and that deafferentation leads to the loss of kinematic
phases of limb movements and abnormal synchronization of
muscle activation (Kargo and Giszter 2000). Although another
study of frogs performing voluntary movements suggests that
the contribution of sensory afferents to motor module organi-
zation is limited (Cheung et al. 2005), recent studies in human
stroke patients showed that abnormalities in muscle cocontrac-
tion are observed in both reflex responses and voluntary arm
movements (Trumbower et al. 2008). Similarly, dysfunction of
excitatory Ia afferent projections and recurrent inhibition from
the quadriceps to the soleus motoneurons (Dyer et al. 2009)
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could lead to coexcitation of plantarflexors and knee extensors
and contribute to the merging of the support and propulsion
modules that we observed. Similarly, impaired function of
heteronymous (Gordon et al. 2009; Nichols et al. 2002),
reciprocal (Finley et al. 2008) and afferent (Lewek et al. 2006)
reflex pathways may lead to atypical coactivation, and these
changes will be evident within the modular organization. The
transition between the stance and swing phases of gait, which
has been shown to be facilitated by stretch of the limb flexor
muscles during late stance (Hiebert et al. 1996), may be
adversely affected by diminished proprioception post-stroke.
For example, the inability to advance the center of mass over
the stance leg may reduce or eliminate the proprioceptive
signal for flexion.

Methodological considerations

Although methodological factors may influence quantitative
aspects of our analysis, it is unlikely that such differences
would qualitatively alter our results. It is possible the slower
walking speed in persons post-stroke contributed to the iden-
tification of fewer modules. However, we believe that this is
not the case, because each subject in essence served as their
own control with respect to this question, as their nonparetic
leg required a greater number of modules than their paretic leg
even at slow walking speeds. Thus walking speed was proba-
bly not a major determinant for fewer modules being identified
in the paretic leg. It is possible that we may have identified
additional modules had we collected from a larger set of
muscles (Ivanenko et al. 2004) or from a more diverse set of
motor tasks (Ivanenko et al. 2005). Although the identification
of additional modules would have the benefit of improving the
resolution for quantifying locomotor output complexity, it
would not be expected to influence the finding that locomotor
output complexity is reduced post-stroke and is related to
locomotor performance. Another methodological consideration
is the effect of EMG signal amplitude on the number of
modules identified. Despite a possible reduction in the signal-
to-noise ratio of EMG in persons post-stroke, we found that
muscle activation magnitude was comparable across groups.
Indeed, the overall activation magnitude (nonnormalized, rec-
tified, and averaged across muscles) did not differ between the
low and high complexity subgroups for either the paretic or
nonparetic legs, or between the four-module control group and
the low complexity paretic and nonparetic subgroups. Further-
more, the stringent criteria used for choosing the number of
modules required the algorithm to account for subtleties in the
activation signals that were independent of the effects of signal
amplitude. Therefore activation magnitude does not seem to
have a substantial influence on the number of modules needed
to account for signal variability. Finally, it should be noted that
the primary goal of NNMF is to identify general commonalities
underlying a complex data set, and that small intersubject
differences in these common elements are not necessarily
crucial to the interpretation. Accordingly, it can be challenging
to apply a rigorous statistical analysis to some aspects of the
data set (e.g., module composition), particularly between par-
ticipants who exhibit a different number of modules.
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